Documentation
Functions
GroupFunctions.group_function — Functiongroup_function(λ::Irrep, tu::YoungTableau, tv::YoungTableau)Returns the symbolic group function corresponding to irrep
λand Young tableauxtuandtv.
Example:
julia> t = YoungTableau([2,1]); fill!(t, [1,2,3]);
julia> group_function([2,1,0], t, t)group_function(λ::Irrep, tab_u::YTableau, tab_v::YTableau; verbose::Bool = false) -> BasicCompute group theoretical function based on Young tableaux and irreducible representations.
Arguments:
λ::Irrep: Irreducible representationtab_u::YTableau: First Young tableautab_v::YTableau: Second Young tableauverbose::Bool: Flag for detailed output (default: false)
Returns:
Complex: Group function evaluated
Notes:
- Uses SymEngine for symbolic computation
- Involves matrix operations and coset calculations
group_function(λ::Irrep, tu::GTPattern, tv::GTPattern)Returns the symbolic group function corresponding to irrep
λand GT patternstuandtv.
Example:
julia> t = GTPattern([[2,1,0],[2,1],[2]],[2]);
julia> group_function([2,1,0], t, t)group_function(λ::Irrep, pat_u::GTPattern, pat_v::GTPattern; verbose::Bool = false) -> BasicCompute group theoretical function based on Gelfand-Tsetlin patterns and irreducible representations.
Arguments:
λ::Irrep: Irreducible representationpat_u::GTPattern: First Gelfand-Tsetlin patternpat_v::GTPattern: Second Gelfand-Tsetlin patternverbose::Bool: Flag for detailed output (default: false)
Returns:
Basic: Computed polynomial expression in SymEngine format
Notes:
- Converts GT patterns to Young tableaux for calculations
- Uses SymEngine for symbolic computation
group_function(λ::Irrep, tu::GTPattern, tv::GTPattern, mat::Array{Complex{Float64},2})Returns the numeric group function, for an SU(n) member
mat, corresponding to irrepλand a pair of GT patternstuandtv.
julia> using RandomMatrices
julia> mat = rand(Haar(2),3)
julia> t = GTPattern([[2,1,0],[2,1],[2]],[2]);
julia> group_function([2,1,0], t, t, mat)group_function(λ::Irrep, tu::GTPattern, tv::GTPattern, mat::Array{Complex{Float64},2})Returns the numeric group function, for an SU(n) member
mat, corresponding to irrepλand STYTtuandtv.
Example:
julia> using RandomMatrices
julia> mat = rand(Haar(2),3)
julia> t = YoungTableau([2,1]); fill!(t, [1,2,3]);
julia> group_function([2,1,0], t, t, mat)Gelfand-Tsetlin patterns
GT patterns are used to denote the basis states.
GroupFunctions.GTPattern — TypeGTPattern(arrayofarrays)
Example:
julia> GTPattern([[2,1,0],[2,1],[2]])
│ 2 1 0 ╲
│ 2 1 〉
│ 2 ╱Construction of matrices
GT patterns are used to denote the basis states.
GroupFunctions.bloquesun — Functionbloquesun(size::Int64, position::Int64, angles::Tuple{Float64,Float64,Float64})Computes the SU(2) matrix using
anglesan embeds it into asizetimessizematrix.
Example:
α5,β5 = rand(Float64,2)
yy2=bloquesun(4,2,(α5,β5,α5))